1 research outputs found

    Energetic swarm control with application to multiple vehicle systems

    Get PDF
    Control and coordination of multiple vehicle systems has been a very active area of research in recent years. Recent advancements in computation, communication, and mechatronics have allowed the development of large groups of vehicles, often referred to as swarms, in order to accomplish complex missions over large areas with redundant fault tolerant capabilities. Existing swarm control work has addressed swarm aggregation, foraging swarms, swarm formation, and swarms that track and enclose targets. Energetic swarm control is another significant recent contribution to the swarm control literature. It allows the control of the internal kinetic energy and potential kinetic energy of the swarm system in order to achieve tasks such as sweeping an area, patrolling, and area coverage. This thesis involves the application of energetic swarm control to wheeled mobile robots. A lower level control layer for wheeled mobile robots, based on feedback linearization, is developed and combined with a higher level particle based energetic swarm controller. Furthermore, input saturation constraints are addressed using a suitable control allocation approach. An experimentally verified model of a wheeled mobile robot is developed and used to demonstrate the capabilities of the new energetic swarm control approach for wheeled mobile robots
    corecore